三角函数有哪些?,常见的三角函数有哪些?
三角函数有:正弦函数、余弦函数、正切函数、余切函数、正割函数、余割函数,在各个象限的正负情况如下:(表示格式为“象限”/“+或-”)正弦函数:y=sinx,一/+、二/+、三/-、四/-;余弦函数:y=cosx。
大家好,今天小编在百度知道关注到一个比较有意思的话题,就是关于三角函数的问题,于是小编就整理了3个相关介绍三角函数的解答,让我们一起看看吧。
文章目录:
一、三角函数有哪些?
三角函数帆旁有:正弦函数、余弦函数、正切函数、余切函数、正割函数、余割函滚困数,在各个象限的正负情况如下:(表示格式为“象限”/“+或-”)
正弦函数:y=sinx,一/+、二/+、三/-、四/-;
余弦函数:y=cosx,一/+、二/-、三/-、四/+;
正切函数:y=tanx,一/+、二/-、三/+、四/-;
余切函数:y=cotx,一/+、二/-、三/+、四/-;
正大轿念割函数:y=secx,一/+、二/-、三/-、四/+;
余割函数:y=cscx,一/+、二/+、三/-、四/-。
扩展资料:
常用的和角公式
sin(α+β)=sinαcosβ+ sinβcosα
sin(α-β)=sinαcosβ-sinB*cosα
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
tan(α+β)=(tanα+tanβ) / (1-tanαtanβ)
tan(α-β)=(tanα-tanβ) / (1+tanαtanβ)
二倍角公式
sin2α=2sinαcosα
tan2α=2tanα/(1-tan^2(α))
cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
半角公式
sin^2(α/2)=(1-cosα)/2
cos^2(α/2)=(1+cosα)/2
tan^2(α/2)=(1-cosα)/(1+cosα)
tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα
二、常见的三角函数有哪些?
三角函数有:正弦函数、余弦函数、正切函数、余切函数、正割函数、余割函数,在各个象限的正负情况如下:(表示格式为“象限”/“+或-”)
正弦函数:y=sinx,一/+、二/+、三/-、四/-;
余弦函数:y=cosx,一/+、二/-、三/-、四/+;
正切函数:y=tanx,一/+、二/-、三举掘哗/+、四/-;
余切函数:y=cotx,一/+、二/-、三/+、四/-;
正割函数:y=secx,一/+、二/-、三/-、四/+;
余割函数:y=cscx,一/+、二/+、三/-、四/-。
常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他散悉的三角函数。
扩展资料:
诱导公式口诀正行“奇变偶不变,符号看象限”意义:
k×π/2±a(k∈z)的三角函数值,当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号;当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。
在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。 k,b与函数图象所在象限。
当k>0时,直线必通过一、三象限,从左往右,y随x的增大而增大;
当k<0时,直线必通过二、四象限,从左往右,y随x的增大而减小;
当b>0时,直线必通过一、二象限;当b<0时,直线必通过三、四象限。
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图象。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四 象限。
六边形的六个角分别代表六种三角函数,存在如下关系:
1)对角相乘乘积为1,即sinθ·cscθ=1; cosθ·secθ=1; tanθ·cotθ=1。
2)六边形任意相邻的三个顶点代表的三角函数,处于中间位置的函数值等于与它相邻两个函数值的乘积,如:sinθ=cosθ·tanθ;tanθ=sinθ·secθ...
在正切函数的图像中,在角kπ 附近变化缓慢,而在接近角 (k+ 1/2)π 的时候变化迅速。正切函数的图像在 θ = (k+ 1/2)π 有垂直渐近线。这是因为在 θ 从左侧接进 (k+ 1/2)π 的时候函数接近正无穷,而从右侧接近 (k+ 1/2)π 的时候函数接近负无穷。
参考资料来源:
参考资料来源:
三、三角函数有哪些
有正弦函数sinθ、余弦函数cosθ、tanθ、cotθ、正割函数secθ、余割函数cscθ、正矢函数versinθ、余矢函数vercosθ。θ是三角形的一个角度,其性质只是一个符号而已,代表一个任意的角度值。
三角函数简介
三角函数是基本初等函数之一,是以角度(数学上最常用,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。也可以等价地用与单位圆有关的各种线段的长度来定义。
三角函数在研究磨滚三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。
三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学瞎斗余以销贺及物理学方面都有广泛的用途。另外,以三角函数为模版,可以定义一类相似的函数,叫做。常见的双曲函数也被称为、双曲余弦函数等等。
到此,以上就是小编对于三角函数的问题就介绍到这了,希望介绍关于三角函数的3点解答对大家有用。